Fun with Functional Dependencies

or (Draft) Types as Values in Static Computations in Haskell

Thomas Hallgren

December 29, 2000

Abstract

This paper illustrates how Haskell’s type class system can be used
to express computations. Since computations on the type level are
performed by the type checker, these computations are static (i.e.,
performed at compile-time), and, since the type system is decidable,
they always terminate. Haskell thus provides a means to express static
computations, and has a clear distinction between static and dynamic
computations.

Instance declarations define predicates over types, or in the case
of multi-parameter classes, relations between types. With functional
dependencies, multi-parameter classes directly specify functions, and
thanks to them you can get the type checker to compute the values of
function applications, rather than just checking that the result of an
application is what you say it is.

This way of expressing computation gives us the power of a small,
first-order functional programming language, with pattern matching
and structural recursion. We can easily define things like booleans,
natural numbers, lists, and functions over these types. We give some
examples of completely static computations, the most elaborate one
being an implementation of insertion sort. We also give examples where
static and dynamic computations are mixed.

1 Introduction

Concepts, such as programs, programming languages, computations, values
and types, are probably familiar to most readers of this paper. But, to make
a long story short, programming languages are used to express computa-
tions. Computations manipulate values. Typed programming languages
distinguish between types and wvalues. Types are related to values by a typ-
ing relation that says what values belong to what types, so one usually think
of types as sets of values. Expressions, and other program parts, can be
assigned types too, to indicate what kind of values the produce or manipu-
late. Types can thus be used do document programs (to clarify what kind



of values are involved in a certain part of the program) and to help detect
programmer mistakes.

In statically typed languages, the types are not seen as something that
take part in computations, but rather something that allows a compiler to
check that a program is type correct without actually running the program.

Seeing types as a way to organize values, one can ask the question if it
would be meaningful to have a similar way to organize types? The answer
is yes, and different programming languages have different ways to organize
types. Most widely known is probably the way types are organized in class
hierarchies in object oriented programming languages.

Haskell [Pet97] also has a class system [WB89] to organize types, orig-
inally introduced to allow a systematic treatment of overloading. Haskell
classes are not quite like classes in object oriented languages: the relation
between types and classes is similar to the relation between values and types,
i.e., types can belong to classes. For example, the class Eq is used to group
types that allow their values to be tested for equality and the Show class
contain types whose values can be converted to strings.

The interesting observation for the following is that in Haskell we have
three levels on which things are described. On the ground level we have val-
ues. The values belong to types, which form the second level, and the types
belong to classes, which form the third level. We thus have two relations,
one between values and types and one between types and classes. In the
next section, we make some reflections on the similarities and differences
between these two relations.

2 Values and types vs types and classes

Haskell has, unsurprisingly, ways to introduce values, types and classes, and
to create relations between them.

Values and types are introduced together in data-type declarations. For
example, the definition

data Bool = False | True

simultaneously introduces the values False and True, the type Bool and
states that False and True belong to the type Bool.

Classes and their relations to types are introduced in a slightly different
way. Classes are introduces by stating their names and parameters and
giving the types of the overloaded operations that types belonging to the
class should support. As an example, a class for types that support equality
could be introduced with the following declaration:

class Eq a where (==) :: a -> a -> Bool



Types are declared as belonging to a class, often referred to as being an
instance of the class, in separate instance declarations. This means that the
definition of what types belong to a particular class is left open, allowing a
class to be extended with new instances at arbitrary points in the program.
In contrast, data-type definitions are closed.

To declare that booleans can be tested for equality we would give the
following declaration:

instance Eq Bool where (==) = ...

where ... is a suitable implementation of equality for booleans.

Type definitions can be parameterized. A typical example is the defini-
tion of the list type, where the type parameter give the type of the elements
of a list:

data List a = Nil | Cons a (List a)

When parameterized types are declared as instances of classes, it is often
useful to make some assumptions about the parameter types. For example,
to define how lists are tested for equality, we need to refer to the equality
test for the elements of the list. Instance declarations of this kind look like
this:

instance (Eq a) => Eq (List a) where (==) = ...

An instance relation like this can be seen as a computation rule, that
given an equality test for an arbitrary type, for example Bool, gives us an
equality test for lists containing values of that type, for example List Bool.
As we will see later, this gives us a way to express computations on the type
level.

3 Computations

3.1 Dynamic computation
In Haskell, computations are usually expressed as functions from values to
values. For example, if we define natural numbers (and an abbreviation for
a sample number) as

data Nat = Zero | Succ Nat

three = Succ (Succ (Succ Zero))

we can define functions that tell if a number is even or odd as follows:



even Zero = True
even (Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

In an interactive Haskell system, such as Hugs [Jon00a], we can then ask
for expressions to be computed:

> odd three
True

3.2 Static computation

As mentioned earlier, some instance declarations in Haskell can be seen
as computation rules. Since Haskell is statically typed, the computations
expressed in this way will be static, i.e., performed at compile-time.

3.2.1 Predicates

To define what even and odd numbers are, a Prolog programmer could define
the following predicates:

even(zero).
even(succ(N)) :-odd(N).
odd(succ(N)) :—even(N).

where names beginning with lowercase letter denote constants, which need
not be declared before they are used. We can make a rather direct transcrip-
tion of this program using Haskell type classes, but we first need to declare
the constants involved:

data Zero
data Succ n

type Three = Succ (Succ (Succ Zero)) -- Just a sample number.

class Even n
class 0dd n

Note that the Prolog constants and predicates become types and classes,
respectively. (Here, since we are not interested in values, but only types and
classes, we have defined data types without any constructors and classes
without any overloaded operations.) We then define the predicates using
instance declarations:



instance Even Zero
instance 0dd n => Even (Succ n)
instance Even n => 0dd (Succ n)

The question now is: how do we ask the Haskell system to check if a
number is even? The computations are performed by the type checker, and
in Hugs, the only way to make the type checker work for us is to ask it
to compute the type of an expression, or to check that an expression has a
given type. Although the definitions given above are enough to express the
desired computation, for practical reasons we have to make a small addition
to them:

class Even n where isEven :: n
class 0dd n where isOdd :: n

We are now saying that, if n is a type representing an even number, then
there is an element of n, which can be referred to by the name isEven. The
instance declarations can be left unchanged.

We can now ask Hugs to check if a number is even or odd:

> :type isEven :: Three

ERROR: Illegal Haskell 98 class constraint in inferred type
*%* Expression : isEven

*x*x Type : 0dd Zero => Three

We got a type error because three is not an even number. An interpre-
tation of the last line is that if zero were odd, then three would be even.

> :type is0Odd :: Three
is0dd :: Three

The absence of a type error means that three is an odd number.

3.2.2 Relations

If a Prolog programmer wanted to define a relation corresponding more di-
rectly to the functions even and odd in section 3.1, the result would probably
be the following:

even(zero,true).
even(succ(N),B) :-odd(N,B).
odd(zero,false).
odd (succ(N),B) :-even(N,B).

Using multi-parameter classes [JIM97] we can again make a rather direct
Haskell transcription. We start by declaring the constants we haven’t used
before:



data True

data False
class Even n b where even :: n -> b
class Odd n b where odd :: n -> b

And again, for practical reasons, we have included overloaded operations
in the classes, although we are only interested in the types.
The Prolog relations can now be transcribed as:

instance Even Zero True
instance 0dd n b => Even (Succ n) b
instance 0dd Zero False

instance Even n b => 0dd (Succ n) b
and we can ask Hugs to check if a number is even or odd:

> :type odd (undefined::Three) :: True

odd undefined :: True

> :type odd (undefined::Three) :: False

odd undefined :: 0dd (Succ (Succ (Succ Zero))) False => False
> :type even (undefined::Three) :: False

even undefined :: False

The queries now look a bit more complicated. In the first example, we
asked if Three is related to True by the relation 0dd, and Hugs replied that,
indeed, that is the case. In the second example, we ask in the same way if
three is false, and Hugs says that this would have be the case, if the program
had contained an instance declaration like

instance 0dd (Succ (Succ (Succ Zero))) False

but the program doesn’t. There is nothing that prevent us from adding
such an instance, but then Even and 0dd would no longer correspond to the
functions even and odd in section 3.1. In fact, they would not be functions
anymore, but some other kind of relations.

Can we ask Hugs to compute function applications? We can try:

> :type odd (undefined::Three)
odd undefined :: 0dd (Succ (Succ (Succ Zero))) a => a

Hugs’ reply means that the result of applying 0dd to Three can be any
type a, provided the program contains instance declarations allowing us to
derive that 0dd (Succ (Succ (Succ Zero))) a holds. Hugs does not try
to enumerate possible values of a, like a Prolog system would. With the
given instance declarations, the only possible value for a is True, but since
the instance relation is open, it is seen as a premature commitment to say
that a must be True.



3.2.3 Functions

With the definitions given in the previous section, Hugs has no idea that
we intend for Even and 0dd to be functions, rather than arbitrary relations.
However, recent work has added the possibility to declare functional depen-
dencies between the parameters of a multi-parameter class [Jon0Ob]. We
can redefine Even and 0dd as follows:

class Even n b | n -> b where even :: n > b
class 0dd nb | n -> b where odd :: n -> b

This says that the relation Even n b is actually a function from n to b.
This prevents us from at the same time declaring both Even Zero True and

Even Zero False, and allows b to be computed if n is a known number:

> :type even (undefined::Three)

even undefined :: False
> :type odd (undefined::Three)
odd undefined :: True

Now, having seen that these strange looking definitions actually can be
used to compute something, we perhaps feel more motivated to go on and
define some more functions on natural numbers. The following dynamic
ones,

add Zero b = b
add (Succ a) b = Succ (add a b)

mul Zero b = Zero
mul (Succ a) b = add b (mul a b)

have the following static counterparts:

class Add abc | ab ->c where add :: a -> b -> ¢
instance Add Zero b b
instance Add a b ¢ => Add (Succ a) b (Succ c)

class Mul a bc | ab ->c wheremul :: a -> b -> ¢
instance Mul Zero b Zero
instance (Mul a b ¢,Add b ¢ d) => Mul (Succ a) b d

u=undefined

Note that we also introduced u as a convenient abbreviation of undefined.
We can try some static additions and multiplications:



> :type add (u::Three) (u::Three)

add u u :: Succ (Succ (Succ (Succ (Succ (Succ Zero)))))

> :type mul (u::Three) (u::Three)

mul u u :: Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ

Zero))))))))

Note that the command :type asks Hugs to just infer the type of an
expression, not to compute its value. No ordinary, dynamic Haskell compu-
tations are performed in the above examples.

3.3 Mixing static and dynamic computations

We have now seen that Haskell allows us to define dynamic functions (section
3.1), i.e., computations to be performed at run-time, and static functions
(section 3.2.3), i.e., computations to be performed at compile-time. Can we
mix the two, and define functions that are computed partly at compile-time,
partly at run-time? The answer is: yes, definitely. It actually happens all
the time, when overloaded functions are used in ordinary Haskell programs.
Or, to be more precise, the compiler has the opportunity to perform some
computations at compile-time, but can also choose to delay most of the work
until run-time [Jon94].

A common example used to illustrate static vs dynamic computations is
the power function. The dynamic version could be defined as

pow b Zero = one
pow b (Succ n) = mul b (pow b n)

and a completely static version could be defined as

type One = Succ Zero
class Pow a b c | a b -> ¢ where pow :: a -=> b -> ¢

instance Pow a Zero One
instance (Pow a b ¢,Mul a ¢ d) => Pow a (Succ b) d

Using the Haskell type Int for the dynamic part of the computation, we
can define a version of the power function, where the base is dynamic and
the exponent is static, as follows:

class Pred a b | a —=> b where pred :: a->b
instance Pred (Succ n) n

class Power n where power::Int->n->Int

instance Power Zero where power _ _

instance Power n => Power (Succ n) where
power x n = x*power x (pred n)

I
[y



An example computation is

> power 2 (mul (u::Three) (u::Three))
512

This simple example might seem a bit pointless in an interactive environ-
ment where compile-time and run-time coincide. The computation proceeds
roughly as follows:

e The type checker computes nine from three times three.

e The application of Power to nine is reduced by the type checker, gen-
9

erating a version of power that for a given n computes n”.
e Finally the dynamic function is applied to 2, and the result 2° is com-
puted by the interpreter.

With an optimizing compiler, and the same function is used repeatedly,
the possibility to move computations to compile-time could of course give a
considerable speed-up.

3.4 A larger example of static computation

In the above sections we have presented a way to express static computations
in Haskell, using the class system. We now show that this way of expressing
static computations is not limited to the rather simple algorithms we have
seen so far. We start with a representation of lists and conclude with an
implementation of insertion sort.

First, the constructors of the list type:

data Nil = Nil
data Cons x xs = Cons

Generating a descending sequence of numbers:

class DownFrom n xs | n -> xs where downfrom :: n -> xs
instance DownFrom Zero Nil
instance DownFrom n xs => DownFrom (Succ n) (Cons n xs)

Comparing numbers:

class Lte abc | a b ->c where 1te :: a => b -> ¢
instance Lte Zero b T

instance Lte (Succ n) Zero F

instance Lte a b ¢ => Lte (Succ a) (Succ b) ¢

Insertion sort:



class Insert x xs ys | x xs -> ys where insert :: x -> xs -> ys
instance Insert x Nil (Singleton x)
instance (Lte x y b, InsertCons b x y ys) => Insert x (Cons y ys) r

class InsertCons b x1 x2 xs ys | b x1 x2 xs -> ys
instance InsertCons T x1 x2 xs (Cons x1 (Cons x2 xs))
instance Insert x1 xs ys => InsertCons F x1 x2 xs (Cons x2 ys)

class Sort xs ys | xs -> ys where sort :: xs -> ys
instance Sort Nil Nil
instance (Sort xs ys,Insert x ys zs) => Sort (Cons x xs) zs

To test the above definition we define
11 = downfrom (u::Three)
and make some tests in Hugs:

> :type 11
11 :: Cons (Succ (Succ Zero)) (Cons (Succ Zero) (Cons Zero Nil))

> :type sort 11
sort 11 :: Sort (Cons (Succ (Succ Zero)) (Cons (Succ Zero) (Cons
Zero Nil))) (Cons Zero a) => Cons Zero a

> sort 11
ERROR: Unresolved overloading
*x*x* Type : (Sort Nil a, Insert Zero a b, Insert (Succ Zero) b

c, Insert (Succ (Succ Zero)) c (Cons Zero d)) => Cons Zero d
*%x* Expression : sort 11

Unfortunately, Hugs’ type checker doesn’t reduce the types as far as
expected. The reason for this is at the time of this writing unknown...

4 Concluding remarks

The particular use of type classes explored in this paper are perhaps of the
more esoteric kind, and probably not what they were intended for. But,
as many people have already discovered, multi-parameter classes with func-
tional dependencies can be very useful for more conventional programming
tasks as well.

Haskell 98 [JHe99], the most recent version of Haskell, does not in-
clude multi-parameter classes and functional dependencies. GHC [ghc00]
and Hugs [Jon00a] support these extensions to varying degree, though.

It appears that the limits of what can be done within Haskell-like type
systems are yet to be found. Two recent examples of other tricks that seem
to stretch the limits are [Oka99] and [Wei00].



References

[ghc00]

[JHe*99]

[JIM97]

[Jon94]

[Jon00a]

[Jon0OODb]

[Oka99)

[Pet97]
[WB89]

[Wei00]

The Glasgow Haskell Compiler. http://www.haskell.org/ghc/,
2000.

Simon Peyton Jones, John Hughes, (editors), Lennart Augusts-
son, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas Johnsson,
Mark Jones, John Launchbury, Erik Meijer, John Peterson, Alas-
tair Reid, Colin Runciman, and Philip Wadler. Report on the
Programming Language Haskell 98, a Non-strict, Purely Func-
tional Language. Available from http://haskell.org, February
1999.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes:
exploring the design space. In Haskell Workshop, 1997.

Mark P. Jones. Dictionary-free Overloading by Partial Evalua-
tion. In ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, Orlando, Florida, June
1994.

Mark P. Jones. Hugs 98. http://www.haskell.org/hugs/, February
2000.

Mark P. Jones. Type Classes with Functional Dependencies. In
Proceedings of the 9th FEuropean Symposiumon Programming, E-
SOP 2000, number 1782 in LNCS, Berlin, Germany, March 2000.
Springer-Verlag.

Chris Okasaki. From Fast Exponentiation to Square Matrices: An
Adventure in Types. In International Conference on Functional
Programming, pages 28-35, Paris, France, September 1999.

J. Peterson. The Haskell Home Page. http://haskell.org, 1997.

P. Wadler and S. Blott. How to make ad hoc polymorphism less ad
hoc. In Proceedings 1989 Symposium Principles of Programming
Languages, pages 6076, Austin, Texas, 1989.

Stephanie Weirich. Type-safe cast. In International Conference
on Functional Programming, Montréal, Canada, September 2000.



