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Logic and Topology

topos

(Tierney-Lawvere) A topos is a presentable locally cartesian closed category
with a subobject classifier
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Logic and Topology

〈〈Simple 〉〉 type theory

1940 A. Church A Formulation of the Simple Theory of Types

Extremely simple and natural

A type bool as a type of 〈〈propositions 〉〉

A type I for 〈〈 individuals 〉〉

Function type A→ B

Natural semantics of types as sets
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Logic and Topology

Functions in simple type theory

In set theory, a function is a functional graph

In type theory, a function is given by an explicit definition

If t : B, we can introduce f of type A→ B by the definition

f(x) = t

f(a) 〈〈 reduces 〉〉 to (a/x)t if a is of type A
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Functions in simple type theory

We have two notions of function

-functional graph

-function explicitly defined by a term

What is the connection between these two notions?

Church introduces a special operation ιx.P (x) and the 〈〈axiom of description 〉〉

If ∃!x : A.P (x) then P (ιx.P (x))
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Functions in simple type theory

We can then define a function from a functional graph

∀x.∃!y.R(x, y)→ ∃f.∀x.R(x, f(x))

by taking f(x) = ιy.R(x, y)

By contrast, Hilbert’s operation εx.P (x) (also used by Bourbaki) satisfies

if ∃x : A.P (x) then P (εx.P (x))

To use ∃!x : A.ϕ presupposes a notion of equality on the type A
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Rules of equality

Equality can be specified by the following purely logical rules

(1) a =A a

(2) if a0 =A a1 and P (a0) then P (a1)
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Equality in mathematics

The first axiom of set theory is the axiom of extensionality stating that two
sets are equal if they have the same element

In Church’s system we have two form of the axiom of extensionality

(1) two equivalent propositions are equal

(P ≡ Q) → P =bool Q

(2) two pointwise equal functions are equal

(∀x : A.f(x) =B g(x)) → f =A→B g

The univalence axiom is a generalization of (1)
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Limitation of simple type theory

We can form

I → bool, (I → bool)→ bool, ((I → bool)→ bool)→ bool, . . .

but not talk internally about the family of such types

We cannot introduce an arbitrary structure (ring, group, . . . )
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Dependent types

The basic notion is the one of family of types B(x), x : A

We describe directly some primitive operations

(Πx : A)B(x) f where f(x) = b

(Σx : A)B(x) (a, b)

A+B i(a), j(b)

which are derived operations in set theory
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Dependent types

Logical operations are reduced to constructions on types by the following
dictionnary

A ∧B A×B = (Σx : A)B

A ∨B A+B

A→ B A→ B = (Πx : A)B

(∀x : A)B(x) (Πx : A)B(x)

(∃x : A)B(x) (Σx : A)B(x)
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Dependent types

de Bruijn (1967) notices that this approach is suitable for representation of
mathematical proofs on a computer (AUTOMATH)

Proving a proposition is reduced to building an element of a given type

〈〈This reminds me of the very interesting language AUTOMATH, invented by
N. G. de Bruijn. AUTOMATH is not a programming language, it is a language
for expressing proofs of mathematical theorems. The interesting thing is that
AUTOMATH works entirely by type declarations, without any need for traditional
logic! I urge you to spend a couple of days looking at AUTOMATH, since it is
the epitome of the concept of type. 〉〉

D. Knuth (1973, letter to Hoare)
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Dependent types

Two ways of introducing dependent types

(1) Universes

(2) Path types
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Universes

A universe is a type the element of which are types, and which is closed by
the operations

(Πx : A)B(x) (Σx : A)B(x) A+B

Russell’s paradox does not apply directly since one cannot express X : X as a
type

However, Girard (1971) shows how to represent Burali-Forti paradox if one
introduces a type of all types
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Univers

Martin-Löf (1973), following Grothendieck, introduces of hierarchy of universe

U0 : U1 : U2 : . . .

Each universe Un is closed by the operations

(Πx : A)B(x) (Σx : A)B(x) A+B
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Universes and dependent sums

We can formally represent the notion of structure

(ΣX : U0)((X ×X → X)×X)

collection of types with a binary operation and a constant

(X ×X → X)×X family of types for X : U0

This kind of representation is used by Girard for expressing Burali-Forti paradox
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Equality type

It is now represented by a dependent family of type Path(A, a, b)

We have the constant path 1a : Path(A, a, a) and if p : Path(A, a, b) the
transport function

C(a)→ C(b)

which is reminiscent of the path lifting condition
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Equality type

Voevodsky introduced the definitions

isContr(A) = (Σa : A)(Πx : A)Path(A, a, x)

Fiber(f, a) = (Σx : T )Path(A, f(x), a) for f : T → A

isEquiv(f) = (Πa : A)isContr(Fiber(f, a))

Equiv(T,A) = (Σf : T → A)isEquiv(f)

isProp(X) = (Πa : X)(Πb : X)Path(X, a, b)

isSet(X) = (Πa : X)(Πb : X)isProp(Path(X, a, b))
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Equivalence

Voevodsky proves for instance that

given ψ : (Πa : A) B(a)→ C(a)

we can define ψ′ : (Σa : A)B(a)→ (Σa : A)C(a)

then

isEquiv(ψ′)↔ (Πa : A)isEquiv(ψ(a))
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Equality type

Martin-Löf introduced, for purely formal logical reasons, the law

(Πa : A)isContr((Σx : A)Path(A, a, x))

This expresses that the total space of the fibration defined by the space of
paths having a given origin is contractible

This is exactly the starting point of the loop-space method in algebraic
topology (J.P. Serre)
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Univalence axiom

The canonical map

Path(U,A,B)→ Equiv(A,B)

is itself an equivalence (original statement)

This generalizes the fact that two equivalent propositions are equal!

Another (equivalent) statement is

(ΠA : U)isContr((ΣX : U)Equiv(A,X))
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Equality type

isContr((Σx : A)B(x)) is a uniform generalization of

(∃!x : A)B(x)

and we have a description operator since

isContr((Σx : A)B(x))→ (Σx : A)B(x)

unique existence implies effective existence
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Algebraic topology

In the 50s, development of a “combinatorial” notion of spaces

D. Kan: first with cubical sets (1955) then with simplicial sets

“A combinatorial definition of homotopy groups” (1958)

These spaces form a cartesian closed category
Moore (1955)

They form a model of type theory with the univalence axiom
Voevodsky (2009)
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Algebraic topology

Proof of Moore’s Theorem

“assez technique et délicate” (H. Cartan, Séminaire E.N.S. 56-57)
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Algebraic topology

Existence of dependent product reduces to the fact that trivial cofibrations
are stable under pullbacks along Kan fibrations

The proof of which is quite complex (uses minimal fibrations?)
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Algebraic topology

All these results are intrinsically non effective

If one expresses the definitions as they are in IZF then the following facts are
not provable

(1) If E → B fibration and b0, b1 path-connected then E(b0) and E(b1) are
homotopy equivalent (j.w.w. M. Bezem, 2015)

(2) Moore’s Theorem (E. Parmann, 2015)
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Algebraic topology

The “reason” is that all these arguments use reasoning by case whether a
complex is degenerate or not

(already in J.P. Serre’s thesis 1951)

This is not decidable in general in an effective framework

The arguments are not “uniform” and non elementary
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Univalent Foundations

I will now present a possible effective combinatorial notion of spaces with
higher-order notion of connectedness

This is done in a constructive setting

We can extract from this a purely syntactical type system with no axioms
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Category of cubes

For each finite set I we introduce a formal representation of the cube [0, 1]I

[0, 1] has a structure of de Morgan algebra

Bounded distributive lattice with a de Morgan involution

We can consider the free de Morgan algebra dM(S) on any set S

It is finite if S is finite

This defines a monad dM on the category of finite sets

C is the opposite of the Kleisli category of dM
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Cubical sets

A map J → I in C is a set theoretic map I → dM(J)

A cubical set if a presheaf on C

Family of sets X(I) with transition functions

X(I)→ X(J) for f : J → I

u 7−→ uf

If I finite set, we write also I the representable functor it defines

So I represents a cubical set
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Category of cubes

We have direct face maps (i0), (i1) : I → I, i that are monos

A face map is a composition of direct face maps

Any map f : J → I can be uniquely decomposed

f = gh

where g is a face map and h : J → K is strict i.e. the corresponding map
K → dM(J) never takes the value 0 or 1
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Singular cubical sets

We have a functor C → Top

I 7−→ [0, 1]I

Any topological space X defines a singular cubical set S(X)

S(X)(I) is the set of all continuous maps [0, 1]I → X
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Interval

I(J) = dM(J)

This defines a cubical set, which represents the interval

I has a de Morgan algebra structure

32



Logic and Topology

Path

If X cubical set, the path “space” of X is XI

An element of XI(J) is defined by an element of X(J, i) with i not in J

u in X(J, i) and v in X(J, k) represents the same element if, and only if,

u(i = k) = v in X(J, k)
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Interval

Homotopy between the constant path on a and any path p : Path A a b

a b

a a

p i

p (i ∧ j)

a

a p j
j

i

This expresses that (Σx : A)Path(A, a, x) is contractible
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Face lattice

I has two global points 0 and 1

Ω subobject classifier

We have a map I→ Ω, i 7−→ (i = 1)

This is a lattice map

The image of this map is the face lattice F→ Ω

Exactly the sieves that are union of faces
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Face lattice

F(I) can be defined directly as the free bounded distributive lattice generated
by symbols (i = 0), (i = 1) and relations

0 = (i = 0) ∧ (i = 1)

Intuitively F will classify cofibrations

We cannot hope to have all monos as cofibrations in an effective way
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Face lattice

Any map ψ : I → F determines a subpresheaf I, ψ of I

(I, ψ)(J) set of maps f : J → I such that ψf = 1

I, ψ is a subpresheaf of I

An map g : K → I determines a map K,ψg → I, ψ that we write also g
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Contractible cubical sets

A cubical set is contractible (uniformely) if

we have an operation ext(I, ψ, u) : I → X given

ψ : I → F, u : I, ψ → X

such that

(1) ext(I, ψ, u)f = ext(J, ψf, uf) : J → X whenever f : J → I and

(2) ext(I, 1, u) = u

ext(I, ψ, u) is an extension of u “uniform in I”
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Contractible cubical sets

The usual definition only requires the existence of an extension of a partial
element u : I, ψ → X

Here we have a “contractibility structure”

It would not work only to require an explicit operation without any uniformity
condition
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Contractible cubical sets

F is a contractible cubical set

Ω is a contractible cubical set

I is not contractible

Any u : I, ψ → I can be extended to I → I

but not in an uniform way! (Ch. Sattler)
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Fibrant cubical sets

X is fibrant if, and only if, we have an operation fill(J, ψ, u) : J × I → X
given

u : (J, ψ)× I t J × 0→ X

such that

(1) fill(J, ψ, u)(g × 1I) = fill(K,ψg, ug) if g : K → J and

(2) fill(J, 1, u) = u
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Fibrant cubical sets

Theorem: Any singular cubical set S(X) is fibrant
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Cofibration-trivial fibration factorization

(A. Swan) What happens to the “small object argument”

Given σ : A→ B where A and B are cubical sets

Define C(I) having for element v, ψ, u with

v : I → B

ψ in F(I)

u : I, ψ → A such that v extends σu

A→ C, u 7−→ (σu, 1, u)

C → B, (v, ψ, u) 7−→ v
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Identity

(A. Swan) We can use this to define Id(A, a, b) from Path(A, a, b)
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Univalence

The definition of Uk is as usual

We consider C = (ΣX : Uk)Equiv(A,X)

We have the first projection p : C → Uk

Main algorithm: For any partial element u : I, ψ → C find a total extension
of pu : I, ψ → Uk

A crucial point is the fact that we have an opearion ∀ : FI → F
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Univalence

From this follows

(1) Uk is fibrant, since any path Path(Uk, A,B) defines an equivalence in
Equiv(A,B)

(2) Univalence in the form that C = (ΣX : Uk)Equiv(A,X) is contractible
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Higher-Inductive Types

We can define spheres Sn : U0 inductively

Propositional truncation inh : Uk → Uk
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Z-Torsors

A Uk-torsor is a type X : Uk with a Z-action such that

(1) for any u in X the map n 7−→ u+ n, Z→ X is an equivalence

(2) and inh(X)

If X is a torsor we cannot in general exhibit one element of X

It follows from (1) and (2) that X is a set
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Z-Torsors

The collection of all torsors form a groupoid Gk which is equivalent to S1

This can be proved without the axiom of choice!

All types Gk are equivalent to S1 : U0

It should be consistent to add Gk : U0
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