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Abstract

Many functions have to be written over and over again

for di�erent datatypes, either because datatypes change

during the development of programs, or because func-

tions with similar functionality are needed on di�er-

ent datatypes. Examples of such functions are pretty

printers, debuggers, equality functions, uni�ers, pattern

matchers, rewriting functions, etc. Such functions are

called polytypic functions. A polytypic function is a

function that is de�ned by induction on the structure

of user-de�ned datatypes. This paper extends a func-

tional language (a subset of Haskell) with a construct

for writing polytypic functions. The extended language

type checks de�nitions of polytypic functions, and infers

the types of all other expressions using an extension of

Jones' theories of quali�ed types and higher-order poly-

morphism. The semantics of the programs in the ex-

tended language is obtained by adding type arguments

to functions in a dictionary passing style. Programs in

the extended language are translated to Haskell.

1 Introduction

Complex software systems usually contain many data-

types, which during the development of the system chan-

ge regularly. Developing innovative and complex soft-

ware is typically an evolutionary process. Furthermore,

such systems contain functions that have the same func-

tionality on di�erent datatypes, such as equality func-

tions, print functions, parse functions, etc. Software

should be written such that the impact of changes to

the software is as limited as possible. Polytypic pro-

grams are programs that adapt automatically to chang-

ing structure, and thus reduce the impact of changes.
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This e�ect is achieved by writing programs such that

they work for large classes of datatypes.

Consider for example the function length :: List

a -> Int, which counts the number of values of type

a in a list. There is a very similar function length

:: Tree a -> Int, which counts the number of oc-

currences of a's in a tree. We now want to generalise

these two functions into a single function which is not

only polymorphic in a, but also in the type constructor;

something like length :: d a -> Int, where d ranges

over type constructors. We call such functions polytypic

functions [15]. Once we have a polytypic length func-

tion, function length can be applied to values of any

datatype. If a datatype is changed, length still be-

haves as expected. For example, the datatype List a

has two constructors with which lists can be built: the

empty list constructor, and the Cons constructor, which

prepends an element to a list. If we add a constructor

with which we can append an element to a list, func-

tion length still behaves as expected, and counts the

number of elements in a list.

The equality function in ML and Ada and the func-

tions in the classes that can be derived in Haskell are ex-

amples of widely used polytypic functions. These func-

tions are automatically generated by the compiler, but

the de�nitions of these functions cannot be given in the

languages themselves. In this paper we investigate a

language extension with which such functions can be

de�ned in the language. Polytypic functions are useful

in many situations; more examples are given in Jeuring

and Jansson [16].

A polytypic function can be applied to values of a

large class of datatypes, but some restrictions apply. We

require that a polytypic function is applied to values

of regular datatypes. A datatype D a is regular if it

contains no function spaces, and if the arguments of the

datatype constructor on the left- and right-hand side

in its de�nition are the same. The collection of regular

datatypes contains all conventional recursive datatypes,

such as Nat, List a, and di�erent kinds of trees. We



introduce the class Regular of all regular datatypes,

and we write: length :: Regular d => d a -> Int

Polytypic functions can be de�ned on a larger class of

datatypes, including datatypes with function spaces [9,

28], but we will not discuss these extensions.

1.1 Polymorphism and polytypism

Polytypism di�ers from both parametric polymorphism

and ad-hoc polymorphism (overloading). This subsec-

tion explains how.

A traditional polymorphic function such as

head :: [a] -> a

can be seen as a family of functions - one for each in-

stance of a as a monomorphic type. There need only

be one de�nition of head; the typing rules ensure that

values of type a are never used. A polymorphic function

can be implemented as a single function that works on

boxed values.

An ad-hoc polymorphic function such as

(+) :: Num a => a -> a -> a

is also a family of functions, one for each instance in the

Num class. These instances may be completely unrelated

and each instance is de�ned separately. Helped by type

inference a compiler can almost always �nd the correct

instance.

The polymorphism of a polytypic function such as

length :: Regular d => d a -> Int

is somewhere in between parametric and ad-hoc poly-

morphism. A single de�nition of length su�ces, but

length has di�erent instances in di�erent contexts.

Here the compiler generates instances from the de�-

nition of the polytypic function and the type in the

context where it is used. A polytypic function may

be parametric polymorphic, but it need not be: func-

tion sum :: Regular d => d Int -> Int, which re-

turns the sum of the integers in a value of an arbitrary

datatype, is polytypic, but not parametric polymorphic.

1.2 Writing polytypic programs

There exist various ways to implement polytypic pro-

grams in a typed language. Three possibilities are:

� using a universal datatype;

� using higher-order polymorphism and constructor

classes;

� using a special syntactic construct.

Polytypic functions can be written by de�ning a univer-

sal datatype, on which we de�ne the functions we want

to have available for large classes of datatypes. These

polytypic functions can be used on a speci�c datatype

by providing translation functions to and from the uni-

versal datatype. However, using universal datatypes

has several disadvantages: the user has to write all the

translation functions, type information is lost in the

translation phase to the universal datatype, and type

errors can occur when programs are run. Furthermore,

di�erent people will use di�erent universal datatypes,

which will make program reuse more di�cult.

If we use higher-order polymorphism and construc-

tor classes for de�ning polytypic functions [12, 19], type

information is preserved, and we can use current func-

tional languages such as Gofer and Haskell for imple-

menting polytypic functions. However, writing such

programs is rather cumbersome: programs become clut-

tered with instance declarations, and type declarations

become cluttered with contexts. Furthermore, it is hard

to deal with mutual recursive datatypes.

Since the �rst two solutions to writing polytypic

functions are dissatisfying, we have extended (a subset

of) Haskell with a syntactic construct for de�ning poly-

typic functions. Thus polytypic functions can be imple-

mented and type checked. We will use the name PolyP

both for the extension and the resulting language. Con-

sult the page

http://www.cs.chalmers.se/~johanj/polytypism/

to obtain a preliminary version of a compiler that com-

piles PolyP into Haskell (which subsequently can be

compiled with a Haskell compiler), and for the latest

developments on PolyP.

1.3 PolyP

PolyP is an extension of a functional language that al-

lows the programmer to de�ne and use polytypic func-

tions. The underlying language in this article is a sub-

set of Haskell and hence lazy, but this is not essential

for the polytypic extension. The extension introduces a

new kind of (top level) de�nition, the polytypic con-

struct, used to de�ne functions by induction over the

structure of datatypes. Since datatype de�nitions can

express sum- , product-, parametric- and recursive ty-

pes, the polytypic construct must handle these cases.

PolyP type checks polytypic value de�nitions and

when using polytypic values types are automatically

inferred

1

. The type inference algorithm is based upon

Jones' theories of quali�ed types [18] and higher-order

polymorphism [20]. The semantics of PolyP is de�ned

1

Just as in Haskell, sometimes explicit type annotations are needed

to resolve overloading.
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by adding type arguments to polytypic functions in a

dictionary passing style. We give a type based transla-

tion from PolyP to Haskell that uses partial evaluation

to completely remove the dictionary values at compile

time. Thus we avoid run time overhead for creating

instances of polytypic functions.

The compiler for PolyP is still under development,

and has a number of limitations. Polytypic functions

can only be applied to values of non mutual recursive,

regular datatypes with one type argument. Multiple

type arguments can be encoded in a single sum-type,

but we are working on a more elegant treatment of mul-

tiple type arguments. One of PolyP's predecessors (a

preprocessor that generated instances of polytypic func-

tions [11]) could handle mutual recursive datatypes, and

we hope to port this part of the predecessor to PolyP

in the near future. In the future PolyP will be able

to handle mutual recursive datatypes with an arbitrary

number of type arguments and in which function spaces

may occur.

1.4 Background and related work

Polytypic functions are standard in the Squiggol com-

munity, see [24, 26, 27]. Generating instances for spe-

ci�c polytypic functions, such as (==), map, cata, hylo,

etc. for a given type, is rather simple and has been

demonstrated by several authors [3, 8, 11, 13, 31].

Given a number of prede�ned polytypic functions

many others can be de�ned, and amongst others Jay et

al's type system [2, 13], and Jones' type system based on

quali�ed types and higher-order polymorphism [18, 20]

can be used to type check expressions in a language

with prede�ned polytypic functions. Our approach dif-

fers from these approaches in that we only give two

prede�ned polytypic functions, and we supply a con-

struct to de�ne new polytypic functions by induction

over the structure of datatype de�nitions. This di�er-

ence is essential for polytypic programming, and can be

compared with the di�erence between the �rst versions

of ML that gave a number of prede�ned datatypes and

the later versions of ML that provided a few built in ty-

pes and a construct for de�ning user-de�ned datatypes.

Using a two level language, Sheard and Nelson [30]

show how to write well-typed polytypic programs. A

polytypic program is obtained by embedding second

level type declarations as values in �rst level compu-

tations. The two level language is more powerful than

our language, but it is also a much larger extension of

common functional programming languages.

Adaptive object-oriented programming [23, 29] is a

programming style similar to polytypic programming.

In adaptive OOP methods (corresponding to our poly-

typic functions) are attached to groups of classes (ty-

pes) that usually satisfy certain constraints (such as

being regular). In adaptive OOP one abstracts from

constructor names instead of datatype structure. This

results in a programming style in which typing plays

a much less prominent role than in polytypic program-

ming. However, the resulting programs have very simi-

lar behaviour.

1.5 About this paper

We will use Haskell syntax for programs and types in

our examples. We will use a backward function arrow

in types (and kinds), b <- a, as syntactic sugar for a

-> b.

Section 2 introduces polytypic programming. Sec-

tion 3 discusses the type inference and checking algo-

rithms used in PolyP. Section 4 gives the semantics of

PolyP, and Section 5 shows how to generate code for

PolyP programs. Section 6 concludes the paper.

2 Polytypic programming

In this section we will show how to write polytypic pro-

grams using PolyP. For an extensive introduction to

polytypic programming see Jeuring and Jansson [16].

2.1 Functors for datatypes

To de�ne a polytypic function, we have to be able to

de�ne functions by induction over the structure of a

datatype. The structure of a datatype is described by

means of the functor de�ning the datatype.

Consider the datatype List a de�ned by

data List a = Nil | Cons a (List a)

Values of this datatype are built by prepending values

of type a to a list. This datatype can be viewed as the

�xed point with respect to the second argument of the

datatype FList a x de�ned by

data FList a x = FNil | FCons a x

The datatype FList a x describes the structure of the

datatype List a. Since we are only interested in the

structure of List a, the names of the constructors of

FList are not important. We de�ne FList using a con-

ventional notation by removing FList's constructors

(writing () for the empty space we obtain by removing

FNil), replacing | with +, and replacing juxtaposition

with �.

FList a x = () + a� x

We now abstract from the arguments a and x in FList.

Constructor Par returns the parameter a (the �rst argu-

ment), and Rec returns the recursive parameter x (the

3



second argument). Operators + and � and the empty

product () are lifted.

FList = () + Par �Rec

FList is the functor

2

of List a.

The datatype Tree a is de�ned by

data Tree a = Leaf a | Bin (Tree a) (Tree a)

Applying the same procedure as for the datatype List

a, we obtain the following de�nition.

FTree = Par+Rec�Rec

FTree is the functor of Tree a.

We have given functors that describe the structure

of the datatypes List a and Tree a. We have that for

each regular datatype there exists a (bi)functor F that

describes the structure of the datatype

3

.

For our purposes, a functor is a value generated by

the following grammar.

F ::=f j F + F j F � F j () j Par j Rec j D@F j Con �

where f is a functor variable, D generates datatype

constructors and � in Con � is a type. The alterna-

tive Con � in this grammar is used in the description of

the structure of a datatype that contains constant types

such as Bool, Char, etc. The alternative D@F is used

to describe the structure of types that are de�ned in

terms of other user-de�ned types, such as the datatype

of rose-trees :

data Rose a = Fork a (List (Rose a))

The functor we obtain for this datatype is

FRose = Par � (List @Rec)

2.2 The polytypic construct

We introduce a new construct polytypic for de�ning

polytypic functions by induction on the structure of a

functor:

polytypic p :: t = case f of ffi -> eig

where p is the name of the value being de�ned, t is its

type, f is a functor variable, fi are functor patterns

and ei are PolyP expressions. The explicit type in the

polytypic construct is needed since we cannot in gen-

eral infer the type from the cases.

The informal meaning is that we de�ne a function

that takes a functor (a value describing the structure of

2

In fact, FList is a bifunctor: a functor that takes two arguments;

we will use both terms functor and bifunctor for bifunctors.

3

A datatype can be modelled as the initial algebra in the category

of F a-algebras [24], where F is the the functor of the datatype.

a datatype) as its �rst argument. This function selects

the expression in the �rst branch of the case matching

the functor. Thus the polytypic construct is a template

for constructing instances of polytypic functions given

the functor of a datatype. The functor argument of the

polytypic function need not (and cannot) be supplied

explicitly but is inserted by the compiler during type

inference.

As a running example throughout the paper we take

the function flatten de�ned in �gure 1. When flatten

flatten :: Regular d => d a -> [a]

flatten = cata fl

polytypic fl :: f a [a] -> [a] =

case f of

g + h -> either fl fl

g * h -> \(x,y) -> fl x ++ fl y

() -> \x -> []

Par -> \x -> [x]

Rec -> \x -> x

d @ g -> concat . flatten . pmap fl

Con t -> \x -> []

data Either a b = Left a | Right b

either :: (a->c) -> (b->c) -> Either a b -> c

either f g (Left x) = f x

either f g (Right x) = g x

Figure 1: The de�nition of flatten

is used on an element of type Tree a, the compiler per-

forms roughly the following rewrite steps to construct

the actual instance of flatten for Tree:

flatten

Tree

! cata

Tree

fl

FTree

It follows that we need an instance of cata on the data-

type Tree a, and an instance of function fl on the func-

tor of Tree a. For the latter instance, we use the def-

inition of FTree and the de�nition of fl to transform

fl

FTree

as follows.

fl

FTree

! fl

Par+Rec�Rec

! either fl

Par

fl

Rec�Rec

We transform the functions fl

Par

and fl

Rec�Rec

sepa-

rately. For fl

Par

we have

fl

Par

! nx -> [x]

and for fl

Rec�Rec

we have

fl

Rec�Rec

! n(x,y) -> fl

Rec

x ++ fl

Rec

y

! n(x,y) -> (nx -> x) x ++ (nx -> x) y

4



The last function can be rewritten into uncurry (++),

and thus we obtain the following function for 
attening

a tree:

cata

Tree

(either (nx -> [x]) (uncurry (++)))

By expanding cata

Tree

in a similar way we obtain a

Haskell function for the instance of flatten on Tree.

The catamorphism, or generalised fold, on a data-

type takes as many functions as the datatype has con-

structors (combined into a single argument by means of

function either), and recursively replaces constructor

functions with corresponding argument functions. It is

a generalisation to arbitrary regular datatypes of func-

tion foldr de�ned on lists. We will give the de�nition

of cata in the next subsection.

2.3 Basic polytypic functions

In the de�nition of function flatten we used functions

like cata and pmap. This subsection de�nes these and

other basic polytypic functions.

Since polytypic functions cannot refer to construc-

tor names of speci�c datatypes, we introduce the pre-

de�ned functions out and inn. Function out is used in

polytypic functions instead of pattern matching on the

constructors of a datatype. For example out on Tree is

de�ned as follows:

out

Tree

(Leaf x) = Left x

out

Tree

(Bin l r) = Right (l,r)

Function inn is the inverse of function out. It collects

the constructors of a datatype into a single constructor

function.

out :: Regular d => d a -> fd a (d a)

inn :: Regular d => d a <- fd a (d a)

where fd abbreviates FunctorOf d. FunctorOf is a

special type constructor that takes a datatype construc-

tor, and returns its functor

4

. It is our main means for

expressing the relation between datatypes and functors.

In category theory, a functor is a mapping between

categories that preserves the algebraic structure of the

category. Since a category consists of objects (types)

and arrows (functions), a functor consists of two parts:

a de�nition on types, and a de�nition on functions. The

functors we have seen until now are functions that take

two types and return a type. The part of the functor

that takes two functions and returns a function is called

fmap, see �gure 2.

Using fmap we can de�ne the polytypic version of

function map, pmap, as follows:

4

With datatypes as �x-points of functors, FunctorOf is the `un�x'.

polytypic fmap ::

(a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> fmap p r -+- fmap p r

g * h -> fmap p r -*- fmap p r

() -> id

Par -> p

Rec -> r

d @ g -> pmap (fmap p r)

Con t -> id

f -+- g = either (Left . f) (Right . g)

(f -*- g) (x,y) = (f x , g y)

Figure 2: De�nition of fmap.

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

where out takes the argument apart, fmap applies f to

parameters and (pmap f) recursively to substructures

and inn puts the parts back together again.

Function cata is also de�ned in terms of function

fmap:

cata :: Regular d =>

(FunctorOf d a b -> b) -> (d a -> b)

cata f = f . fmap id (cata f) . out

This one-liner, together with the de�nition of fmap is

all that is needed to obtain a catamorphism for every

regular datatype.

2.4 Catamorphisms on speci�c datatypes

Since catamorphisms are not only useful when de�ning

polytypic functions, but also when de�ning functions on

speci�c datatypes, we provide a shorthand notation for

creating the function argument to cata: fci -> eig.

As an example, consider the following datatype of sim-

ple expressions.

data Expr a = Const a

| Add (Expr a) (Expr a)

| Mul (Expr a) (Expr a)

Function eval evaluates an expression.

eval :: Num a => Expr a -> a

eval = cata feval

where feval = { Const -> id

Add -> (+)

Mul -> (*) }

Evaluating eval expr for some expr :: Expr a will

result in replacing each constructor in expr with its

corresponding function.

5



2.5 More polytypic functions

We can de�ne a polytypic equality function using a

polytypic zip function:

(==) :: (Regular d,Eq a) => d a -> d a -> Bool

a == b = maybe False

(all (uncurry (==)) . flatten)

(pzip (a,b))

pzip :: Regular d =>

(d a,d b) -> Maybe (d (a,b))

fzip :: Bifunctor f =>

(f a b,f c d) -> Maybe (f (a,c) (b,d))

where maybe, all and uncurry are prede�ned Haskell

functions. Function pzip is a generalisation of the Has-

kell function zip :: [a] -> [b] -> [(a,b)]. Func-

tion zip takes a pair of lists to a list of pairs. If the lists

are of unequal length (that is their structures are di�er-

ent) the longer list is truncated (replaced by the empty

structure). In pzip a pair of structures is mapped to

Just a structure of pairs if the structures are equal, and

Nothing otherwise, since it is in general impossible to

know what `truncate' or an `empty structure' means for

a type d a. Function pzip is de�ned using the nonre-

cursive variant fzip, which is de�ned by means of the

polytypic construct.

The evaluation of a == b gives False if pzip (a,b)

gives Nothing and checks that all pairs in the zipped

structure are equal otherwise.

In the next subsection we will use function separate

which separates a value into its structure and its con-

tents.

separate :: Regular d => d a -> (d (),[a])

separate x = (pmap (const ()) x, flatten x)

Function separate is the central function in Jay's [14]

representation of values of shapely types: a value of a

shapely type is represented by its structure, obtained

by replacing all contents of the value with (), and its

contents, obtained by 
attening the value.

2.6 Polytypic data compression

A considerable amount of internet tra�c consists of

�les that possess structure | examples are databases,

html �les, and JavaScript programs | and it will pay

to compress these structured �les. Structure-speci�c

compression methods give much better compression re-

sults than conventional compression methods such as

the Unix compress utility [1, 32]. For example, Unix

compress typically requires four bits per byte of Pascal

program code, whereas Cameron [4] reports compres-

sion results of one bit per byte Pascal program code.

The basic idea of the structure-speci�c compression

methods is simple: parse the input �le into a structured

value, separate structure from contents, compress the

structure into a bit-string by representing constructors

by numbers, and compress the resulting string and the

contents with a conventional compression method. For

example, suppose we have the following datatype for

trees:

data Tree a = Leaf a | Bin (Tree a) (Tree a)

and a �le containing the following tree t

Bin (Bin (Leaf "bar") (Leaf "car"))

(Bin (Leaf "far") (Leaf "war"))

Separating structure from contents gives:

Bin (Bin (Leaf ()) (Leaf ()))

(Bin (Leaf ()) (Leaf ()))

and a list containing the four words bar, car, far and

war. Assigning 0 to Leaf and 1 to Bin , the above struc-

ture can be represented by 1100100. This bit-string

equals 100 when read as a binary number, and hence

this list can be represented by the 100'th ASCII char-

acter `d'. So the tree t can be represented by the list

of words [d,bar,car,far,war]. The tree t is stored

in 68 bytes, and its compressed counterpart requires 19

bytes. This list can be further compressed using a con-

ventional compression method.

Most authors of program code compression programs

[4, 5] observe that this method works for arbitrary struc-

tured objects, but most results are based on compress-

ing Pascal programs. To compress JavaScript programs

we will have to write a new compression program. It

is desirable to have a polytypic data compression pro-

gram.

The description of the basic idea behind polytypic

data compression is translated into a polytypic program

pcompress as follows. Function pcompress takes as

argument a description (concrete syntax) of how to

print values of a datatype (the abstract syntax).

pcompress :: (Regular d,Text a) =>

Syntax d -> String -> String

pcompress concrete_syntax =

ccompress

. structure_compress -*- show

. separate

. parse concrete_syntax

We will describe each of the new functions above in

turn. We will omit the precise de�nitions of these func-

tions.

Function parse is a polytypic function of type

parse::Regular d => Syntax d -> String -> d a

6



It takes a description of the concrete syntax of a data-

type, and returns a parser for that concrete syntax. It

is only de�ned if the grammar for the concrete syntax

satis�es certain properties.

Function structure compress takes a structure, re-

places its constructors by numbers, and turns the result-

ing structure into a string.

structure_compress :: d () -> String

Function show :: Text a => a -> String prints

the content list generated by separate and, �nally,

function ccompress uses a conventional compression

program to compress the pair of strings.

ccompress :: (String,String) -> String

3 Type inference

Polytypic value de�nitions can be type checked, and

for all other expressions the type can be inferred. This

section discusses the type checking and type inference

algorithms.

The �rst subsection introduces the core language

without the polytypic construct, but with quali�ed

and higher-order polymorphic types. The second sub-

section extends the core with PolyP in two steps. The

third subsection discusses uni�cation in the extended

language, and the fourth subsection shows how to type

check a polytypic value de�nition.

3.1 The core language

Our core language is an extension of core-ML with qual-

i�ed types and higher order polymorphism [20], see �g-

ure 3. Each constructor in this language has a super-

script denoting its kind. For example, a basic type has

kind *, and a datatype constructor such as List has

kind * -> *. We call the resulting language QML. The

set of constructor constants contains:

->, (,), Either :: * -> * -> *

A program consists of a list of datatype declarations

and a binding for main.

The typing rules and the type inference algorithm

are based on the extensions of the standard rules and al-

gorithm [6] that handle quali�ed and higher-order poly-

morphic types, see Jones [18, 20]. Compared to the tra-

ditional Hindley-Milner system the type judgements are

extended with a set of predicates P . The rules involv-

ing essential changes in the predicate set are shown in

�gure 4. The other rules and the algorithm are omitted.

The entailment relation k� relates sets of predicates and

is used to reason about quali�ed types, see [18].

E ::= x variable

j EE application

j �x:E abstraction

j let Q in E let-expression

Q ::= x = E variable binding

C

�

::= �

�

constants

j �

�

variables

j C

�

0

!�

C

�

0

applications

� ::= C

�

types

� ::= P ) � quali�ed types

� ::= 8t

�

i

:� type schemes

Figure 3: The core language QML

()E)

P j � ` e : � ) � P k��

P j � ` e : �

()I)

P; � j � ` e : �

P j � ` e : � ) �

Figure 4: Some of the typing rules for QML

3.2 The polytypic language extension

The polytypic extension of QML consists of two parts

- an extension of the type system and an extension of

the expression language. We call the extended QML

language polyQML.

3.2.1 Extending the type system

The type system is extended by generalising the uni�-

cation algorithm and by adding new types, kinds and

classes to the initial type environment. The initial typ-

ing environment of the language polyQML consists of

four components: the typings of the functions inn and

out, the type classes Regular and Bifunctor, two type

constructors FunctorOf and Mu, and the collection of

functor constructors (+, *, @, (), Par, Rec and Con t).

� Functions inn and out were introduced in sec-

tion 2.3.

out :: Regular d => d a -> fd a (d a)

inn :: Regular d => d a <- fd a (d a)

where fd abbreviates FunctorOf d. Note that

these functions have quali�ed higher-order poly-

morphic types.
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� The class Regular contains all regular datatypes

and the class Bifunctor contains the functors of

all regular datatypes. To re
ect this the entail-

ment relation is extended as follows for polyQML:

k� Regular D, for all regular datatypes D a

Regular d k� Bifunctor (FunctorOf d)

� FunctorOf is a type constructor that takes a data-

type constructor and represents its functor. Type

constructor Mu is the inverse of FunctorOf: it takes

a functor, and represents the datatype that has

the functor as structure. As there may be di�er-

ent datatypes with the same structure, we add a

second argument of Mu to disambiguate types. The

type constructor Mu is useful when we want to re-

late similar but di�erent types. FunctorOf and Mu

have the following kinds:

FunctorOf :: 1 -> 2

Mu :: 1 <- (2,1)

where 1 abbreviates the kind of regular type con-

structors (*->*) and 2 abbreviates the kind of bi-

functors (*->*->*).

� The functor constructors obtained from the non-

terminal F are added to the constructor constants,

and have the following kinds:

* , + :: 2 -> 2 -> 2

@ :: 1 -> 2 -> 2

(),Par,Rec,Con t :: 2

Each of these constructors has one rule in the en-

tailment relation of one of the following forms:

Bifunctor f,Bifunctor g k� Bifunctor(f+g)

Regular d, Bifunctor g k� Bifunctor (d@g)

k� Bifunctor Par

The resulting type system is quite powerful; it can

be used to type check many polytypic programs in a

context assigning types to a number of basic polytypic

functions. But although we can use and combine poly-

typic functions, we cannot de�ne new polytypic func-

tion by induction on the structure of datatypes.

At this point we could choose to add some basic poly-

typic functions that really need an inductive de�nition

to the typing environment. This would give us roughly

the same expressive power as the language given by

Jay [13] extended with quali�ed types. As a minimal

example we could add fmap to the initial environment:

fmap :: Bifunctor f =>

(a->b) -> (c->d) -> f a c -> f b d

letting us de�ne and type check polytypic functions like

pmap and cata. The type checking algorithm would

for example derive pmap (+1) (Leaf 4) :: Regular

�

0

= (�; 
); 
 = (x : �)

P

i

j �

0

` e

i

: ff 7! f

i

g�

P

1

; : : : ; P

n

j � `

polytypic x : � = case f of ff

i

! e

i

g : 


Figure 5: The typing rule for polytypic

type (f + g) a b = Either (f a b) (g a b)

type (f * g) a b = (f a b , g a b)

type () a b = ()

type Par a b = a

type Rec a b = b

type (d @ g) a b = d (g a b)

type Con t a b = t

Figure 6: Interpreting functors as type synonyms

Tree => Tree Int. But it would, at best, be hard to

write a polytypic version of a function like zip. Adding

the polytypic construct to our language will make writ-

ing polytypic programs much simpler.

3.2.2 Adding the polytypic construct

To add the polytypic construct, the production for

variable bindings in the let-expression, Q, is extended

with

polytypic x : � = case f

�!�!�

of fF

i

! E

i

g

where f is a functor variable, and F is the nonterminal

that describes the language of functors de�ned in Sec-

tion 2.1. The resulting language is polyQML. To be able

to do the case analysis over a functor, it must be built

up using the operators +, *, @ and the type constants

(), Par, Rec and Con t. This is equivalent to being in

the class Bifunctor and thus the context Bifunctor f

is always included in the type � of a function de�ned

by the polytypic construct. (But it need not be given

explicitly.)

The typing rules for polyQML are the rules from

QML together with the rule for typing the polytypic

construct given in �gure 5. For the notation used, see

[18]. Note that the polytypic construct is not an ex-

pression but a binding, and hence the typing rule re-

turns a binding. The rule is not as simple as it looks

- the substitution ff 7! f

i

g replaces a functor variable

with a functor interpreted as a partially applied type

synonym, see �gure 6.

8



3.3 Uni�cation

The (omitted) typing rule for application uses a uni�-

cation algorithm to unify the argument type of a func-

tion with the type of its argument. The presence of

the equalities concerning Mu and FunctorOf complicate

uni�cation.

The uni�cation algorithm we use is an extension of

the kind-preserving uni�cation algorithm of Jones [20],

which in its turn is an extension of Robinson's well-

known uni�cation algorithm. We unify under the equal-

ities

Mu (FunctorOf d,d) = d (1)

FunctorOf (Mu (f,d)) = f (2)

Mu(F

D

,D) = Mu(FunctorOf D,D)(3)

where F

D

is the functor corresponding to the datatype D

a built with the functor constructors. The last equality

represents a set of equalities: one such equality is gener-

ated for each regular datatype declared in the program.

For example, if a program declares the datatype List

a, the equality

Mu(()+Par*Rec,List) = Mu(FunctorOf List,List)

is generated.

We will write C �

�

C

0

if C and C

0

are uni�ed un-

der equalities (1), (2), and (3) by substitution �. For

example, we have

Tree a �

�

1

Mu (f,d) a

Mu (f + g,d) �

�

2

Mu (FunctorOf List,List)

where

�

�

1

= ff 7! FunctorOf Tree;d 7! Treeg

�

2

= ff 7! ();g 7! Par*Rec; d 7! Listg

Uni�cation under equalities is known as semantic

uni�cation, and is considerably more complicated than

syntactic uni�cation. In fact, for many sets of equali-

ties it is impossible to construct a (most general) uni-

�er. However, if we can turn the set of equalities under

which we want to unify into a complete (normalising

and con
uent) set of rewriting rules, we can use one

of the two algorithms (using narrowing or lazy term

rewriting) from Martelli et al. [21, 25] to obtain a most

general uni�er for terms that are uni�able.

If we replace the equality symbol by! in our equali-

ties, we obtain a complete set of rewriting rules. We use

the recursive path orderings technique as developed by

Dershowitz [7, 21] to prove that the rules are normal-

ising, and we use the Knuth-Bendix completion proce-

dure [21, 22] to prove that the rules are con
uent. Both

proofs are simple.

Theorem. If there is a uni�er for two given types C,

C

0

, then C �

�

C

0

using Jones [20] for kind-preserving

�

0

= (�; 
); 
 = (x : 8

fg

(�))

P

i

j S

i

(T

i�1

�

0

) `

w

e

i

: �

i

8

T

n

�

0

(S

n

� � �S

i+1

(P

i

) �

i

)) � ff 7! f

i

g�

T

0

= fg; T

i

= S

i

T

i�1

� `

w

polytypic x : � = case f of ff

i

! e

i

g : 


Figure 7: The alternative for polytypic in W

uni�cation and Martelli et al's [25] algorithm for seman-

tic uni�cation, and � is a most general uni�er for C and

C

0

. Conversely, if no uni�er exists, then the uni�cation

algorithm fails.

3.4 Type checking the polytypic construct

Instances of polytypic functions generated by means of

a function de�ned with the polytypic construct should

be type correct. For that purpose we type check poly-

typic functions.

Type checking a polytypic value de�nition amounts

to checking that the inferred types for the case branches

are more general than the corresponding instances of

the explicitly given type. So for each polytypic value

de�nition polytypic x : � = case f of ff

i

! e

i

g we

have to do the following for each branch of the case:

� Infer the type of e

i

: �

i

.

� Calculate the type the alternative should have ac-

cording to the explicit type: �

i

= ff 7! f

i

g�.

� Check that �

i

is an instance of �

i

.

When calculating the types of the alternatives the func-

tor constructors are treated as type synonyms de�ned

in �gure 6. The complete type inference/checking algo-

rithmW is obtained by extending Jones' type inference

algorithm [20] with the alternative for the polytypic

construct given in �gure 7. As an example we will sketch

how the de�nition of fl in �gure 1 is type checked:

In the g*h branch of the polytypic case, we �rst infer

the type of the expression e

�

= n(x,y) -> fl x ++

fl y. Using fresh instances of the explicit type � =

f a [a] -> [a] for the two occurrences of fl we get

�

�

= (x b [b],y b [b]) -> [b]. We then calculate

the type �

�

= ff 7! g*hg� = (g*h) a [a] -> [a] =

(g a [a],h a [a]) -> [a]. Since �

�

= fx 7! f;y 7!

g; b 7! ag�

�

we see that �

�

is an instance of �

�

.

In the Rec branch of the polytypic case, we �rst infer

the type of the expression e

Rec

= nx -> x. The type of

this expression is �

Rec

= b -> b. We then calculate the

type �

Rec

= ff 7! Recg� = Rec a [a] -> [a] = [a]

-> [a]. Since �

Rec

= fb 7! [a]g�

Rec

we see that �

Rec

9



is an instance of �

Rec

. The other branches are handled

similarly.

If a polytypic binding can be type checked using

the typing rules, algorithm W also manages to type

check the binding. Conversely, if algorithmW can type

check a polytypic binding, then the binding can be

type checked with the typing rules too. Together with

the results from Jones [18] we obtain the following the-

orem.

Theorem. The type inference/checking algorithm is

sound and complete.

4 Semantics

The meaning of a QML expression is obtained by trans-

lating the expression into a version of the polymorphic

�-calculus called QP that includes constructs for evi-

dence application and evidence abstraction. Evidence

is needed in the code generation process to construct

code for functions with contexts. For example, if the

function (==) of type 8a . Eq a => a -> a -> Bool

is used on integers somewhere, we need evidence for the

fact Eq Int, meaning that Int has an equality. One

way to give evidence in this case is simply to supply

the function primEqInt. Again, the results from this

section are heavily based on Jones' work on quali�ed

types [18].

The language QP has the same expressions as QML

plus two new constructions:

E ::= � � � same as for QML expressions

j E

e

evidence application

j �v:E evidence abstraction

� ::= C

�

types

j P ) � quali�ed types

j 8t

�

i

:� polymorphic types

For notational convenience we will also use case-state-

ments. The typing rules for QP are omitted.

Except for the translation rule for the polytypic

construct given in �gure 8, the translation rules are

simple and omitted. A translation rule of the form

P j S(�) `

w

e ; e

0

: � can be read as an attribute

grammar. The inherited attributes (the input data)

consist of a type context � and an expression e and

the synthesised attributes (the output data) are the ev-

idence context P , the substitution S, the translated QP

expression e

0

and the inferred type � .

For example, if we translate function fl :: Bifunc-

tor f => f a [a] -> [a], we obtain after simpli�ca-

tion the code in �gure 9.

fl = �v:case v of

f + g ! either fl

f

fl

g

f � g ! n(x,y) -> fl

f

x ++ fl

g

y

() ! nx -> []

Par ! nx -> [x]

Rec ! nx -> x

d @ g ! concat : flatten

d

: pmap

d

fl

g

Con t ! nx -> []

Figure 9: The translation of function fl into QP

In this translation we use a conversion function C ,

which transforms evidence abstractions applied to evi-

dence parameters into an application of the right type.

Function C is obtained from the expression � �

C

�

0

,

which expresses that � is more general than �

0

and that

a witness for this statement is the conversion function

C : � ! �

0

. The inputs to function � are the two type

schemes � and �

0

, and the output (if it succeeds) is the

conversion function C. It succeeds if the uni�cation al-

gorithm succeeds on the types and the substitution is

from the left type to the right type only, and if the ev-

idence for the contexts in � can be constructed from

the evidence for the contexts in �

0

. The function C is

constructed from the entailment relation extended with

evidence values.

As evidence for the fact that a functor f is a bifunc-

tor we take a symbolic representation f of the functor

(an element of the datatype described by nonterminal

F from Section 2.1). So f : Bifunctor f for all f for

which k� Bifunctor f holds. The evidence for regular-

ity of a datatype D a is a dictionary with three compo-

nents: the de�nitions of inn and out on the datatype

and evidence that the corresponding functor is indeed

a bifunctor.

Theorem. The translation from polyQML to QP pre-

serves well-typedness and succeeds for programs with

unambiguous type schemes.

5 Code generation

To generate code for a polyQML program, we generate

a QML expression from a polyQML expression in two

steps:

� A polyQML expression is translated to a QP ex-

pression with explicit evidence parameters (dictio-

naries).

� The QP expression is partially evaluated with re-

spect to the evidence parameters giving a program

in QML.
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Figure 8: The translation of the polytypic construct

When the program has been translated to QP all occur-

rences of the polytypic construct and all references to

the classes Regular and Bifunctor have been removed

and the program contains evidence parameters instead.

We remove all evidence parameters introduced by poly-

typism by partial evaluation [17]. The partial evalua-

tion is started at the main expression (which must have

an unambiguous type) and is propagated through the

program by generating requests from the main expres-

sion and its subexpressions.

The evidence for regularity of a datatype D a (the

entailment k� Regular D) is a dictionary containing the

functions inn, out and the bifunctor F

D

. PolyP con-

structs these dictionaries with a number of straightfor-

ward inductive functions over the abstract syntax of

regular datatypes. Functions inn and out are now ob-

tained by selecting the correct component of the dictio-

nary.

In practice, a PolyP program (a program written in a

subset of Haskell extended with the polytypic construct)

is compiled to Haskell (Hugs). In the appendix we have

given an example PolyP program and the code that is

generated for this program.

If the size of the original program is n, and the to-

tal number of subexpressions of the bifunctors of the

regular datatypes occurring in the program is m, then

the size of the generated code is at most n �m. Each

request for an instance of a function de�ned by means

of the polytypic construct on a datatype D a results in

as many functions as there are subexpressions in the bi-

functor f for datatype D a (including the bifunctors of

the datatypes used in f). The e�ciency of the generated

code is only a constant factor worse than hand-written

instances of polytypic functions.

6 Conclusions and future work

We have shown how to extend a functional language

with the polytypic construct. The polytypic con-

struct considerably simpli�es writing programs that ha-

ve the same functionality on a large class of datatypes

(polytypic programs). The extension is a small but

powerful extension of a language with quali�ed types

and higher-order polymorphism. We have developed

a compiler that compiles Haskell with the polytypic

construct to plain Haskell.

A lot of work remains to be done. The compiler

has to be extended to handle mutual recursive data-

types with an arbitrary number of type arguments and

in which function spaces may occur. For example, for

the purpose of multiple type arguments we will intro-

duce a class Functor n, with Regular = Functor 1,

and Bifunctor = Functor 2. The constructors Mu and

FunctorOf have to be extended in a similar fashion.

The partial evaluation approach to code generation

implies that we cannot compile a module containing

a de�nition of a polytypic function separately from a

module in which it is used. A solution might be to

translate polytypic programs into a language with in-

tensional polymorphism [10] instead of translating poly-

typic programs into QP.
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A Appendix

A.1 A simple PolyP program

Combining the de�nitions from �gure 1 (flatten) with

the de�nition of fmap in �gure 2 and the code below

we get a small polytypic program testing the function

separate. We assume a prelude containing composi-

tion and de�nitions of the functions const, concat.

main = (separate l,separate r)

l = Cons 1 (Cons 2 Nil)

r = Fork 1 (Cons (Fork 2 Nil) Nil)

data List a = Nil | Cons a (List a)

data Rose a = Fork a (List (Rose a))

separate x = (pmap (const ()) x,flatten x)

pmap f = inn . fmap f (pmap f) . out

cata h = h . fmap id (cata h) . out

A.2 The generated code

The code generated by PolyP looks as follows. We have

edited the generated code slightly.

uncurry0 f p = f

uncurry2 f p = f (fst p) (snd p)

data List a = Nil | Cons a (List a)

data Rose a = Fork a (List (Rose a))

main = (separate_f4List l, separate_f4Rose r)

l = Cons 1 (Cons 2 Nil)

r = Fork 1 (Cons (Fork 2 Nil) Nil)

separate_f4List x =

(pmap_f4List (const ()) x, flatten_f4List x)

separate_f4Rose x =

(pmap_f4Rose (const ()) x, flatten_f4Rose x)

pmap_f4List f = inn_f4List

. fmap_f4List f (pmap_f4List f)

. out_f4List

pmap_f4Rose f = inn_f4Rose

. fmap_f4Rose f (pmap_f4Rose f)

. out_f4Rose

flatten_f4List = cata_f4List fl_f4List

flatten_f4Rose = cata_f4Rose fl_f4Rose

inn_f4List = either (uncurry0 Nil)

(uncurry2 Cons)

fmap_f4List =

\p r -> (fmap_e p r) -+- (fmap_Ppr p r)

out_f4List x = case x of

Nil -> Left ()

(Cons a b) -> Right (a, b)

cata_f4List h = h

. fmap_f4List id (cata_f4List h)

. out_f4List

fl_f4List = either fl_e fl_Ppr

inn_f4Rose = uncurry2 Fork

fmap_f4Rose =

\p r -> (fmap_p p r) -*- (fmap_A4Listr p r)

out_f4Rose x = case x of

(Fork a b) -> (a, b)

cata_f4Rose h = h

. fmap_f4Rose id (cata_f4Rose h)

. out_f4Rose

fl_f4Rose = \(x, y) -> fl_p x ++ fl_A4Listr y

f -+- g = either (Left . f) (Right . g)

fmap_e = \p r -> id

fmap_Ppr = \p r -> fmap_p p r -*- fmap_r p r

fl_e = \x -> ([])

fl_Ppr = \(x, y) -> (fl_p x) ++ (fl_r y)

(f -*- g) (x, y) = (f x, g y)

fmap_p = \p r -> p

fmap_A4Listr = \p r-> pmap_f4List (fmap_r p r)

fl_p = \x -> x : ([])

fl_A4Listr = concat . flatten_f4List

. (pmap_f4List fl_r)

fmap_r = \p r -> r

fl_r = \x -> x
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